Compensatory regulation of Cav2.1 Ca2+ channels in cerebellar Purkinje neurons lacking parvalbumin and calbindin D-28k.
نویسندگان
چکیده
Ca(v)2.1 channels regulate Ca(2+) signaling and excitability of cerebellar Purkinje neurons. These channels undergo a dual feedback regulation by incoming Ca(2+) ions, Ca(2+)-dependent facilitation and inactivation. Endogenous Ca(2+)-buffering proteins, such as parvalbumin (PV) and calbindin D-28k (CB), are highly expressed in Purkinje neurons and therefore may influence Ca(v)2.1 regulation by Ca(2+). To test this, we compared Ca(v)2.1 properties in dissociated Purkinje neurons from wild-type (WT) mice and those lacking both PV and CB (PV/CB(-/-)). Unexpectedly, P-type currents in WT and PV/CB(-/-) neurons differed in a way that was inconsistent with a role of PV and CB in acute modulation of Ca(2+) feedback to Ca(v)2.1. Ca(v)2.1 currents in PV/CB(-/-) neurons exhibited increased voltage-dependent inactivation, which could be traced to decreased expression of the auxiliary Ca(v)beta(2a) subunit compared with WT neurons. Although Ca(v)2.1 channels are required for normal pacemaking of Purkinje neurons, spontaneous action potentials were not different in WT and PV/CB(-/-) neurons. Increased inactivation due to molecular switching of Ca(v)2.1 beta-subunits may preserve normal activity-dependent Ca(2+) signals in the absence of Ca(2+)-buffering proteins in PV/CB(-/-) Purkinje neurons.
منابع مشابه
Effect of treatment with the dihydropyridine-type calcium antagonist darodipine (PY 108-068) on the expression of calbindin D-28K immunoreactivity in the cerebellar cortex of aged rats.
The influence of long term treatment with the dihydropyridine-type Ca2+ antagonist darodipine (PY 108-068) on age-dependent changes in calbindin D-28K immunoreactivity in the cerebellar cortex of male Wistar rats was assessed. In 12-month-old rats used as an adult reference group, specific calbindin D-28K immunoreactivity was found within the cytoplasm of Purkinje neurons and their dendritic pr...
متن کاملStriking pattern of Purkinje cell loss in cerebellum of an ataxic mutant mouse, tottering.
Tottering mouse is an ataxic mutant that carries a mutation in a gene encoding for the apha1A subunit of P/Q-type Ca2+ channel (Cav2.1). This study revisited to examine whether a Purkinje cell loss occurred in the cerebellum of tottering mice. In tottering mice, Calbindin D-28k negative gaps were apparent in the vermis but not in the hemisphere. Calbindin D-28k immunofluorescence with DAPI stai...
متن کاملMono- and dual-frequency fast cerebellar oscillation in mice lacking parvalbumin and/or calbindin D-28k.
Calbindin is a fast Ca2+-binding protein expressed by Purkinje cells and involved in their firing regulation. Its deletion produced approximately 160-Hz oscillation sustained by synchronous, rhythmic Purkinje cells in the cerebellar cortex of mice. Parvalbumin is a slow-onset Ca2+-binding protein expressed in Purkinje cells and interneurons. In order to assess its function in Purkinje cell firi...
متن کاملThe properties of intracellular calcium stores in cultured rat cerebellar neurons.
Cerebellar Purkinje neurons contain a remarkable array of cellular components potentially concerned with regulation of the free cytoplasmic Ca2+ concentration, [Ca2+]i. These include high concentrations of Ca(2+)-binding proteins, inositol 1,4,5-triphosphate receptors (IP3R), and ryanodine receptors (RyR). The latter two molecules are thought to be associated with intracellular Ca2+ stores. We ...
متن کاملCurrent Neurobiology 2011; 2 (1):
The present study examined the development of the axonal torpedoes of the cerebellar Purkinje cells in a Cav2.1 channel mutant, rolling mouse Nagoya. Calbindin D-28k immunostaining revealed a few torpedoes in both the cerebellar white matter and all three subdivisions of the deep cerebellar nuclei of rolling mice on postnatal day (PD) 21, while there was no difference in either number among the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 103 1 شماره
صفحات -
تاریخ انتشار 2010